flag_tdtu_en
 

Thông tin lý lịch khoa học

 
I. THÔNG TIN CÁ NHÂN
Họ và tên: Bùi Kim My
Ngày sinh: 17/07/1988 Giới tính: Nam
Số CMND/CCCD:
Học vị cao nhất: Năm nhận học vị:
Nơi nhận học vị:
Chức danh khoa học cao nhất: Năm bổ nhiệm:
Đơn vị công tác: Khoa Giáo dục Tiểu học Chức vụ hiện tại: Giảng viên
Email: buikimmy@hpu2.edu.vn SĐT:
ORCID:

II. QUÁ TRÌNH ĐÀO TẠO

Education and academic degrees:
  • 2011  Bachelor: Hanoi Pedagogical University 2;
  • 2014  Master: Hanoi Pedagogical University 2;
  • 2019  PhD: Hanoi Pedagogical University 2.  

III. QUÁ TRÌNH CÔNG TÁC CHUYÊN MÔN

Employment:
  • 2016-2019: Researcher, Duy Tan University;
  • 2020-now: Lecturer, Faculty of Primary Education, Hanoi Pedagogical University 2.
  • 10/2021-12/2021: Researcher, Vietnam Institute for Advanced Study in Mathematics (VIASM).

IV. NGOẠI NGỮ

V. KINH NGHIỆM VÀ THÀNH TÍCH NGHIÊN CỨU

5.1. Hướng nghiên cứu chính

  1. Functional Analysis;
  2. Nonlinear Partial Differential Equations;
  3. Infinite Dimensional Dynamical Systems.

5.2. Các đề tài nghiên cứu khoa học đã và đang tham gia:

STT Họ và tên  Vai trò Tên đề tài Mã số Loại đề tài Thời gian thực hiện Tình trạng Xếp loại
1 Bùi Kim My Chủ nhiệm Sự tồn tại nghiệm và tính chất nghiệm của phương trình/hệ phương trình elliptic suy biến HPU2.CS-2021.01 Cấp Trường 1/2021-12/2021 Đã nghiệm thu ngày 4/3/2022 Tốt
2 Bùi Kim My Chủ nhiệm Dáng điệu tiệm cận nghiệm của một số lớp phương trình đạo hàm riêng cấp 2 có nhiễu ngẫu nhiên HPU2.2022-UT-10 Ưu tiên cấp Trường 11/2022-10/2024 Đã nghiệm thu ngày 25/9/2024 Tốt

5.3. Các công trình khoa học đã công bố:

A. Papers and preprints
  1. [16] Bui Kim My (with Dang Thanh Son, Nguyen Duong Toan) Dynamics of the stochastic velocity-vorticity-Voigt model of the 3D Navier-Stokes equations with damping and memory, (2024), submitted.
  2. [15] Bui Kim My (with Ho Thi Hang, Kush Kinra, Manil T. Mohan, Pham Tri Nguyen) Existence and asymptotic autonomous robustness of random attractors for three-dimensional stochastic globally modified Navier-Stokes equations on unbounded domains, (2024), submitted.
  3. [14] Bui Kim My (with Cung The AnhLong term behavior of three-dimensional random Navier-Stokes-Voigt equations driven by colored noise in unbounded domains, preprint, VIASM (2021).
  4. [13] Bui Kim My (with H.T. Hang and P.T. Nguyen) Dynamics of solutions for the three-dimensional stochastic globally modified Navier-Stokes equations on unbounded domains, Bulletin of the Korean Mathematical Society, 61 (2024), No. 5, pp. 1369–1393. DOI: 10.4134/BKMS.b230635 (SCIE, Q3, IF = 0.502).
  5. [12] Bui Kim My Infinitely many solutions of strongly degenerate Schr\"{o}dinger elliptic equations with vanishing potentials, Analysis and Mathematical Physics, 14, 43 (2024), (SCIE, Q2, IF = 1,4), https://link.springer.com/article/10.1007/s13324-024-00903-4.
  6. [11] Bui Kim My (with Ho Thi Hang and Pham Tri Nguyen) Wong-Zakai approximations and attractors for stochastic three-dimensional globally modified Navier-Stokes equations driven by nonlinear noise, Discrete and Continuous Dynamical Systems Series B (2024), 29 (2), 1069-1104. https://dx.doi.org/10.3934/dcdsb.2023124 (SCIE, Q2, IF = 1.3).
  7. [10] Bui Kim My (with Nguyen Duong Toan) Dynamics of stochastic FitzHugh-Nagumo system on unbounded domains with memory, Dynamical Systems. (2023) Vol 38, No.3, pp. 453-476, https://www.tandfonline.com/doi/full/10.1080/14689367.2023.2194522 (SCIE, Q3, IF = 0.663).
  8. [9] Bui Kim My, On the existence of solutions of a Hamiltonian strongly degenerate elliptic system with potentials in R^N(Zeitschrift für Analysis und ihre Anwendungen) Z. Anal. Anwend.  (2022), 41 no. 3/4, pp. 391–416. DOI 10.4171/ZAA/1717 (SCIE, Q2, IF Scopus = 1,365)
  9. [8] Bui Kim My (with Tran Quoc Tuan) Continuous data assimilation algorithm for the three-dimensional Leray-$\alpha$ model with stochastically noisy data, Bull. Korean Math. Soc. (2023) Vol 60, No. 1, pp. 93-111. https://doi.org/10.4134/BKMS.b210919 (SCIE, Q3, IF = 0,406)
  10. [7] Bui Kim My, Existence and multiplicity results of solutions for a class of sublinear degenerate Schr\"{o}dinger equation in $\mathbb{R}^N$, (Matematicheskie Zametki) Mathematical Notes, (2022) Vol 112, No.6, pp.845-860. DOI: 10.1134/S0001434622110190 (SCIE, Q2, IF = 0,650)
  11. [6] Bui Kim My, Nontrivial solutions for a class of Hamiltonian strongly degenerate elliptic system, Applicable Analysis, 102 (2023), no.8, pp.2293-2313. DOI: https://doi.org/10.1080/00036811.2022.2027376) (SCIE, Q2, IF = 1.429)
  12. [5] Bui Kim My (with Cung The Anh and Jihoon Lee) A class of Hamiltonian strongly degenerate elliptic systems with concave and convex nonlinearities, Complex Variables and Elliptic Equations, (2020) 65: 4 648-671. (SCIE, Q2, IF = 0.695)
  13. [4] Bui Kim My (with Cung The AnhExistence and non-existence of solutions to a hamiltonian strongly degenerate elliptic system, Advances in Nonlinear Analysis, (2019) 8 (1), 661-678. (SCIE, Q1, IF = 6.636)
  14. [3] Bui Kim My (with Cung The Anh and Jihoon Lee) On the classification of solutions to an elliptic equation involving the Grushin operatorComplex Variables and Elliptic Equations, (2018) 63 (5), 671-688 ( SCIE, Q2, IF = 0.806)
  15. [2] Bui Kim My (with Cung The AnhLiouville type theorems for elliptic inequalities involving the $\Delta_\lambda$-Laplace operatorComplex Variables and Elliptic Equations, 61 (2016) No. 7, 1002-1013. (SCIE, Q3, IF = 0.616)
  16. [1] Bui Kim My (with Cung The AnhExistence of solutions to $\Delta_\lambda$-Laplace equations without the Ambrosetti-Rabinowitz conditionComplex Variables and Elliptic Equations, 61 (2016) No. 1, 137-150. (SCIE, Q3, IF = 0.616)
B. Conferences and Talks 
  1. 5. Continuous data assimilation algorithm for the three-dimensional Navier-Stokes-$\alpha$ model with stochastically noisy data, Workshop on Dynamical Systems and Related Topics (VIASM). 25/12/2019, Vietnam Institute for Advanced Study in Mathematics (VIASM).
  2. 4. Continuous data assimilation algorithm for the three-dimensional Leray-$\alpha$ model with stochastically noisy data, One-day workshop "Differential Equations and Dynamical Systems: Qualitative Theory, Control, and Applications", 16/10/2019, Vietnam Institute for Advanced Study in Mathematics (VIASM).
  3. 3. Continuous data assimilation algorithm for the three-dimensional Leray-$\alpha$ model with stochastically noisy data,International conference "Differential Equations and Dynamical Systems", Hanoi Pedagogical University 2 and Institute of Mathematics (VAST), 5-6/09/2019.
  4. 2. Some recent results on theory of semilinear degenerate elliptic equations, Seminar in Differential and Integral equations, Departement of Mathematical Analysis, Faculty of Mathematics and Informatics, Hanoi National University of Education, 17/10/2018.
  5. 1. On the classification of solutions to an elliptic equation involving the Grushin operator, Hanoi Pedagogical University 2, 10/2017.