flag_tdtu_en
 

Thông tin lý lịch khoa học

 
I. THÔNG TIN CÁ NHÂN
Họ và tên: Hà Tuấn Dũng
Ngày sinh: 22/11/1994 Giới tính: Nam
Số CMND/CCCD:
Học vị cao nhất: Năm nhận học vị:
Nơi nhận học vị:
Chức danh khoa học cao nhất: Năm bổ nhiệm:
Đơn vị công tác: Khoa Toán học Chức vụ hiện tại: Giảng viên
Email: hatuandung@hpu2.edu.vn SĐT:
ORCID:

II. QUÁ TRÌNH ĐÀO TẠO

Contact Information

 Address:  Department of Mathematics, Hanoi Pedagogical University 2, Nguyen Van Linh Road, Xuan Hoa, Phuc Yen district, Vinh Phuc province, Vietnam.
 Email: hatuandung.hpu2@gmail.com, hatuandung@hpu2.edu.vn.

Education

2012–2016Undergraduate, Department of Mathematics, Hanoi Pedagogical University 2, Nguyen Van Linh Road, Xuan Hoa, Phuc Yen district, Vinh Phuc province, Vietnam.
Undergraduate thesis:
Title: Gradient estimates and Harnack inequalities of nonlinear Heat equations for the V-Laplacian.
Advisor: Professor Nguyen Thac Dung.
Graduation: June 2016.
2017–2019:
 
Master, Department of Mathematics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.
Master thesis:
Title: Geometric properties and gradient estimates for p-Laplacian.
Advisor: Professor Chiung-Jue Anna Sung.
Graduation: June 2019.

December 2020-now: Ph.D. Student, Faculty of Mathematics-Mechanics-Informatics, Hanoi University of Science, Vietnam National University, Hanoi.
Advisor: Professor Nguyen Thac Dung and Professor Tran Thanh Hung. 

Awards

1. First prize, National Mathematical Olympiad for Students (Analysis), Vietnam, 2014.
2. The National Tsinghua University  International Students Scholarship (Master), 2017.
3. The Mathematical Research Award of 2018 awarded by The National Program for the Development of Mathematics, Vietnam.
4. The Silver Medal for the Best Master Thesis Award of The Mathematical Society of the Republic of China, 2019. 
5. The Vingroup (VINIF) Domestic Postgraduate Scholarship for Doctoral Degrees, 2020.
6. The Vingroup (VINIF) Domestic Postgraduate Scholarship for Doctoral Degrees, 2021.
7.  The Vietnam National University Scholarship for Doctor students, 2020-2022.
8. The Mathematical Research Award of 2018-2021 awarded by the Ministry of Education and Training Vietnam.
9. International Mathematical Union Breakout Graduate Fellowship, 2022.
10. International Mathematical Union Breakout Graduate Fellowship, 2023.

III. QUÁ TRÌNH CÔNG TÁC CHUYÊN MÔN

Employment

8/2016 - now: Lecturer, Department of Mathematics, Hanoi Pedagogical University 2, Vietnam.

7/2021- 9/2021: Junior researcher, Vietnam Institute for Advanced Study in Mathematics, 157 Chua Lang street, Lang Thuong ward, Dong Da district, Hanoi, Vietnam.
6/2023 - 8/2023: Junior researcher, Vietnam Institute for Advanced Study in Mathematics, 157 Chua Lang street, Lang Thuong ward, Dong Da district, Hanoi, Vietnam.

Teaching

1. Linear Algebra 1.
2. Linear Algebra 2.
3. Differential Geometry.
4. Elementary Geometry.

Some Professional Services

Referee for Complex Variables and Elliptic Equations, Journal of Inequalities and Applications.
Referee for Mathematical Reviews (MathSciNet).

IV. NGOẠI NGỮ

Languages: Vietnamese and English.

V. KINH NGHIỆM VÀ THÀNH TÍCH NGHIÊN CỨU

5.1. Hướng nghiên cứu chính

1. Partial Differential Equations
2. Geometric Analysis

5.2. Các đề tài nghiên cứu khoa học đã và đang tham gia:

Projects

1. Gradient estimates and Harnack inequalities of nonlinear heat equations for the V-Laplacian on Riemannian manifolds, 2018-2019, Funded by Hanoi Pedagogical University 2 under Grant No. C.2019.05. (Head of the project).
2. Aspects of geometric analysis on manifolds through important geometric partial differential equations, 2020-2022, Funded by Hanoi Pedagogical University 2 under Grant No. C.2020-SP2-07. (Head of the project).
3. Geometric properties and gradient estimates for weighted p-Laplacian on smooth metric measure spaces, 2022-2024, Funded by the Ministry of Education and Training Vietnam under Grant No. B.2022-SP2-01. (Head of the project).
4. Some geometric and analytic properties of some classes of weighted geometric operators on smooth metric measure spaces and applications, 2023-2025, Funded by Hanoi Pedagogical University 2 under Grant No. HPU2.2023-UT-08. (Head of the project).
5. On the qualitative properties of solutions to some nonlinear partial differential equations involving the k-Hessian operator, 2023-2025, Funded by Ministry of Education and Training Vietnam under Grant No. B.2023-SP2-01 (Associate Researcher).
6. Geometric analysis problems on Riemannian and complex manifolds, 2023-2025, Funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.02-2021.28 (Associate Researcher).

5.3. Các công trình khoa học đã công bố:

Paper

1. H. T. DungGradient estimates and Harnack inequalities for Yamabe-type parabolic equations on Riemannian manifolds, Differential Geometry and its Applications, 60 (2018), 39-48. (SCIE, Q2https://doi.org/10.1016/j.difgeo.2018.05.005
2. H. T. DungGradient estimates and Harnack inequalites of nonlinear heat equations for the V-Laplacian, Journal of the Korean Mathematical Society, 55 (6) (2018), 1285-1303. (SCIE, Q3https://doi.org/10.4134/JKMS.j170083
3. H. T. Dung, N. T. Dung, Sharp gradient estimates for a heat equation in Riemannian manifolds, Proceedings of the American Mathematical Society, 147 (2019), 5329-5338. (SCI, Q1https://www.ams.org/journals/proc/2019-147-12/S0002-9939-2019-14645-1/home.html
4. H. T. Dung, Monotonicity of eigenvalues of the p-Laplace operator under the Ricci-Bourguignon flow, Kodai Mathematical Journal, 43 (2020), No. 1, 143-161. (SCIE, Q3) https://projecteuclid.org/euclid.kmj/1584345691
5. H. T. Dung, N. T. Dung, and J. J. Wu, Sharp gradient estimates on weighted manifolds with compact boundary, Communications on Pure and Applied Analysis 20 (2021), 4127-4138. (SCI, Q1https://www.aimsciences.org/article/doi/10.3934/cpaa.2021148
6. H. T. Dung, N. T. Dung, and T. Q. Huy, Rigidity and vanishing theorems for complete translating solitons,  Manuscripta Mathematica, 172 (2023), 331-352. (SCI, Q2https://link.springer.com/article/10.1007/s00229-022-01420-z
7. H. T. DungGradient estimates for a general type of nonlinear parabolic equations under geometric conditions and related problems, Nonlinear Analysis, 226 (2023), 113135. (SCI, Q1https://doi.org/10.1016/j.na.2022.113135
8. H. T. Dung, N. T. Dung, and J. C. Pyo, First 2/n-stability eigenvalue of singular minimal hypersurfaces in space forms,  Annals of Global Analysis and Geometry,  63 (1) (2023). (SCIE, Q1) https://doi.org/10.1007/s10455-022-09880-y.
9. H. T. Dung, N. V. Manh, and N. D. Tuyen, Gradient estimates and Liouville type theorems for nonlinear heat equations along ancient K-super Ricci flow via reduced geometry,  Journal of Mathematical Analysis and Applications, 519 (2) (2023), 126836. (SCI, Q1https://www.sciencedirect.com/science/article/abs/pii/S0022247X22008502
10. H. T. Dung, N. T. Dung, and N. D. Tuyen, A note on p-harmonic l-forms on complete non-compact manifolds, Mediterranean Journal of Mathematics, 20, Article number: 62 (2023) (SCIE, Q2). https://link.springer.com/article/10.1007/s00009-023-02280-x
11. H. T. Dung, N. T. Dung, Gradient estimates for Yamabe type equations under different curvature conditions and applications, 541 (2) (2025), 128769. (SCI, Q1https://www.sciencedirect.com/science/article/abs/pii/S0022247X24006917
12. H. T. Dung,  D. X. Anh, N. T. Dung, Some analytic and geometric aspects of weighted p-Laplacian on smooth metric measure spaces, to appear in International Journal of Mathematics (SCIE, Q2), https://doi.org/10.1142/S0129167X24500770

Preprints

1. H. T. Dung, Harnack inequalities and Liouville-type theorems for a general type of nonlinear parabolic equations on RCD^*(K, N) metric measure spaces, submitted.
2. H. T. Dung, N. T. H. Thu, and N. D. Tuyen, On a class of nonlinear elliptic equations on smooth metric measure spaces and non-existence results, submitted.
3. T. V. Bang, H. T. Dung, and N. T. Manh, Some analytical aspects of a non-linear evolution equation concerning the V-Laplacian on complete Riemannian manifolds, submitted.
4. H. T. DungOn the structure at infinity of complete smooth metric measure spaces with a weighted Poincaré inequality, submitted.
5. H. T. Dung, T. T. Hung, On isometry groups of gradient Ricci solitons, submitted, https://arxiv.org/abs/2406.06997
6. H. T. Dung, N. T. Dung, T. D. M. Hung, On vanishing results for smooth metric measure spaces with weighted curvature tensors, submitted.
7. H. T. Dung, Minkowski-type inequalities for smooth metric measure spaces with a weighted Poincaré inequality, in preparation.

Books

1. T. V. Nghi, P. Thanh. Tam and H. T. Dung, Lecture notes on Linear Algebra, Hanoi Pedagogical University 2, 2017.